Purpose
To compute an additive spectral decomposition of the transfer- function matrix of the system (A,B,C) by reducing the system state-matrix A to a block-diagonal form. The system matrices are transformed as A <-- inv(U)*A*U, B <--inv(U)*B and C <-- C*U. The leading diagonal block of the resulting A has eigenvalues in a suitably defined domain of interest.Specification
SUBROUTINE TB01KD( DICO, STDOM, JOBA, N, M, P, ALPHA, A, LDA, B,
$ LDB, C, LDC, NDIM, U, LDU, WR, WI, DWORK,
$ LDWORK, INFO )
C .. Scalar Arguments ..
CHARACTER DICO, JOBA, STDOM
INTEGER INFO, LDA, LDB, LDC, LDU, LDWORK, M, N, NDIM, P
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), U(LDU,*),
$ WI(*), WR(*)
Arguments
Mode Parameters
DICO CHARACTER*1
Specifies the type of the system as follows:
= 'C': continuous-time system;
= 'D': discrete-time system.
STDOM CHARACTER*1
Specifies whether the domain of interest is of stability
type (left part of complex plane or inside of a circle)
or of instability type (right part of complex plane or
outside of a circle) as follows:
= 'S': stability type domain;
= 'U': instability type domain.
JOBA CHARACTER*1
Specifies the shape of the state dynamics matrix on entry
as follows:
= 'S': A is in an upper real Schur form;
= 'G': A is a general square dense matrix.
Input/Output Parameters
N (input) INTEGER
The order of the state-space representation,
i.e. the order of the matrix A. N >= 0.
M (input) INTEGER
The number of system inputs, or of columns of B. M >= 0.
P (input) INTEGER
The number of system outputs, or of rows of C. P >= 0.
ALPHA (input) DOUBLE PRECISION.
Specifies the boundary of the domain of interest for the
eigenvalues of A. For a continuous-time system
(DICO = 'C'), ALPHA is the boundary value for the real
parts of eigenvalues, while for a discrete-time system
(DICO = 'D'), ALPHA >= 0 represents the boundary value for
the moduli of eigenvalues.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the leading N-by-N part of this array must
contain the unreduced state dynamics matrix A.
If JOBA = 'S' then A must be a matrix in real Schur form.
On exit, the leading N-by-N part of this array contains a
block diagonal matrix inv(U) * A * U with two diagonal
blocks in real Schur form with the elements below the
first subdiagonal set to zero.
The leading NDIM-by-NDIM block of A has eigenvalues in the
domain of interest and the trailing (N-NDIM)-by-(N-NDIM)
block has eigenvalues outside the domain of interest.
The domain of interest for lambda(A), the eigenvalues
of A, is defined by the parameters ALPHA, DICO and STDOM
as follows:
For a continuous-time system (DICO = 'C'):
Real(lambda(A)) < ALPHA if STDOM = 'S';
Real(lambda(A)) > ALPHA if STDOM = 'U';
For a discrete-time system (DICO = 'D'):
Abs(lambda(A)) < ALPHA if STDOM = 'S';
Abs(lambda(A)) > ALPHA if STDOM = 'U'.
LDA INTEGER
The leading dimension of array A. LDA >= MAX(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
On entry, the leading N-by-M part of this array must
contain the input matrix B.
On exit, the leading N-by-M part of this array contains
the transformed input matrix inv(U) * B.
LDB INTEGER
The leading dimension of array B. LDB >= MAX(1,N).
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the leading P-by-N part of this array must
contain the output matrix C.
On exit, the leading P-by-N part of this array contains
the transformed output matrix C * U.
LDC INTEGER
The leading dimension of array C. LDC >= MAX(1,P).
NDIM (output) INTEGER
The number of eigenvalues of A lying inside the domain of
interest for eigenvalues.
U (output) DOUBLE PRECISION array, dimension (LDU,N)
The leading N-by-N part of this array contains the
transformation matrix used to reduce A to the block-
diagonal form. The first NDIM columns of U span the
invariant subspace of A corresponding to the eigenvalues
of its leading diagonal block. The last N-NDIM columns
of U span the reducing subspace of A corresponding to
the eigenvalues of the trailing diagonal block of A.
LDU INTEGER
The leading dimension of array U. LDU >= max(1,N).
WR, WI (output) DOUBLE PRECISION arrays, dimension (N)
WR and WI contain the real and imaginary parts,
respectively, of the computed eigenvalues of A. The
eigenvalues will be in the same order that they appear on
the diagonal of the output real Schur form of A. Complex
conjugate pairs of eigenvalues will appear consecutively
with the eigenvalue having the positive imaginary part
first.
Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) returns the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of working array DWORK.
LDWORK >= MAX(1,N) if JOBA = 'S';
LDWORK >= MAX(1,3*N) if JOBA = 'G'.
For optimum performance LDWORK should be larger.
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the QR algorithm failed to compute all the
eigenvalues of A;
= 2: a failure occured during the ordering of the real
Schur form of A;
= 3: the separation of the two diagonal blocks failed
because of very close eigenvalues.
Method
A similarity transformation U is determined that reduces the
system state-matrix A to a block-diagonal form (with two diagonal
blocks), so that the leading diagonal block of the resulting A has
eigenvalues in a specified domain of the complex plane. The
determined transformation is applied to the system (A,B,C) as
A <-- inv(U)*A*U, B <-- inv(U)*B and C <-- C*U.
References
[1] Safonov, M.G., Jonckheere, E.A., Verma, M., Limebeer, D.J.N.
Synthesis of positive real multivariable feedback systems.
Int. J. Control, pp. 817-842, 1987.
Numerical Aspects
3 The algorithm requires about 14N floating point operations.Further Comments
NoneExample
Program Text
* TB01KD EXAMPLE PROGRAM TEXT
* Copyright (c) 2002-2010 NICONET e.V.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 )
INTEGER LDA, LDB, LDC, LDU
PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
$ LDU = NMAX )
INTEGER LDWORK
PARAMETER ( LDWORK = 3*NMAX )
* .. Local Scalars ..
CHARACTER*1 DICO, JOBA, STDOM
INTEGER I, INFO, J, M, N, NDIM, P
DOUBLE PRECISION ALPHA
* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
$ DWORK(LDWORK), U(LDU,NMAX), WI(NMAX), WR(NMAX)
* .. External Subroutines ..
EXTERNAL TB01KD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, P, ALPHA, DICO, STDOM, JOBA
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) P
ELSE
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
* Find the transformed ssr for (A,B,C).
CALL TB01KD( DICO, STDOM, JOBA, N, M, P, ALPHA, A, LDA,
$ B, LDB, C, LDC, NDIM, U, LDU, WR, WI, DWORK,
$ LDWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
WRITE ( NOUT, FMT = 99987 ) NDIM
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99994 ) WR(I), WI(I)
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
20 CONTINUE
WRITE ( NOUT, FMT = 99993 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
40 CONTINUE
WRITE ( NOUT, FMT = 99992 )
DO 60 I = 1, P
WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
60 CONTINUE
WRITE ( NOUT, FMT = 99991 )
DO 70 I = 1, N
WRITE ( NOUT, FMT = 99995 ) ( U(I,J), J = 1,N )
70 CONTINUE
END IF
END IF
END IF
END IF
STOP
*
99999 FORMAT (' TB01KD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TB01KD = ',I2)
99997 FORMAT (/' The eigenvalues of state dynamics matrix A are ')
99996 FORMAT (/' The transformed state dynamics matrix inv(U)*A*U is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT ( ' (',F8.4,', ',F8.4,' )')
99993 FORMAT (/' The transformed input/state matrix inv(U)*B is ')
99992 FORMAT (/' The transformed state/output matrix C*U is ')
99991 FORMAT (/' The similarity transformation matrix U is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (' The number of eigenvalues in the domain of interest =',
$ I5 )
END
Program Data
TB01KD EXAMPLE PROGRAM DATA (Continuous system)
5 2 3 -1.0 C U G
-0.04165 4.9200 -4.9200 0 0
-1.387944 -3.3300 0 0 0
0.5450 0 0 -0.5450 0
0 0 4.9200 -0.04165 4.9200
0 0 0 -1.387944 -3.3300
0 0
3.3300 0
0 0
0 0
0 3.3300
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
Program Results
TB01KD EXAMPLE PROGRAM RESULTS The number of eigenvalues in the domain of interest = 2 The eigenvalues of state dynamics matrix A are ( -0.7483, 2.9940 ) ( -0.7483, -2.9940 ) ( -1.6858, 2.0311 ) ( -1.6858, -2.0311 ) ( -1.8751, 0.0000 ) The transformed state dynamics matrix inv(U)*A*U is -0.7483 -8.6406 0.0000 0.0000 0.0000 1.0374 -0.7483 0.0000 0.0000 0.0000 0.0000 0.0000 -1.6858 5.5669 0.0000 0.0000 0.0000 -0.7411 -1.6858 0.0000 0.0000 0.0000 0.0000 0.0000 -1.8751 The transformed input/state matrix inv(U)*B is 2.0240 -2.0240 -1.1309 1.1309 -0.8621 -0.8621 2.1912 2.1912 -1.5555 1.5555 The transformed state/output matrix C*U is 0.6864 -0.0987 0.6580 0.2589 0.9650 -0.0471 0.6873 0.0000 0.0000 -0.5609 -0.6864 0.0987 0.6580 0.2589 -0.9650 The similarity transformation matrix U is 0.6864 -0.0987 0.6580 0.2589 0.9650 -0.1665 -0.5041 -0.2589 0.6580 -0.9205 -0.0471 0.6873 0.0000 0.0000 -0.5609 -0.6864 0.0987 0.6580 0.2589 -0.9650 0.1665 0.5041 -0.2589 0.6580 0.9205
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index