| [ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
| 35.1 Functions and Variables for Bernstein |
| [ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Provided k is not a negative integer, the Bernstein polynomials
are defined by bernstein_poly(k,n,x) = binomial(n,k) x^k
(1-x)^(n-k); for a negative integer k, the Bernstein polynomial
bernstein_poly(k,n,x) vanishes. When either k or n are
non integers, the option variable bernstein_explicit controls the
expansion of the Bernstein polynomials into its explicit form; example:
(%i1) load(bernstein)$
(%i2) bernstein_poly(k,n,x);
(%o2) bernstein_poly(k, n, x)
(%i3) bernstein_poly(k,n,x), bernstein_explicit : true;
n - k k
(%o3) binomial(n, k) (1 - x) x
The Bernstein polynomials have both a gradef property and an integrate property:
(%i4) diff(bernstein_poly(k,n,x),x);
(%o4) (bernstein_poly(k - 1, n - 1, x)
- bernstein_poly(k, n - 1, x)) n
(%i5) integrate(bernstein_poly(k,n,x),x);
(%o5)
k + 1
hypergeometric([k + 1, k - n], [k + 2], x) binomial(n, k) x
----------------------------------------------------------------
k + 1
For numeric inputs, both real and complex, the Bernstein polynomials evaluate to a numeric result:
(%i6) bernstein_poly(5,9, 1/2 + %i);
39375 %i 39375
(%o6) -------- + -----
128 256
(%i7) bernstein_poly(5,9, 0.5b0 + %i);
(%o7) 3.076171875b2 %i + 1.5380859375b2
To use bernstein_poly, first load("bernstein").
Default value: false
When either k or n are non integers, the option variable
bernstein_explicit controls the expansion of bernstein(k,n,x)
into its explicit form; example:
(%i1) bernstein_poly(k,n,x);
(%o1) bernstein_poly(k, n, x)
(%i2) bernstein_poly(k,n,x), bernstein_explicit : true;
n - k k
(%o2) binomial(n, k) (1 - x) x
When both k and n are explicitly integers, bernstein(k,n,x)
always expands to its explicit form.
The multibernstein polynomial
multibernstein_poly ([k1, ..., kp], [n1, ..., np],
[x1, ..., xp]) is the product of bernstein polynomials
bernstein_poly(k1, n1, x1) * ... * bernstein_poly(kp, np, xp).
To use multibernstein_poly, first load("bernstein").
Return the n-th order uniform Bernstein polynomial approximation for the
function (x1, x2, ..., xn) |--> f.
Examples:
(%i1) bernstein_approx(f(x),[x], 2);
2 1 2
(%o1) f(1) x + 2 f(-) (1 - x) x + f(0) (1 - x)
2
(%i2) bernstein_approx(f(x,y),[x,y], 2);
2 2 1 2
(%o2) f(1, 1) x y + 2 f(-, 1) (1 - x) x y
2
2 2 1 2
+ f(0, 1) (1 - x) y + 2 f(1, -) x (1 - y) y
2
1 1 1 2
+ 4 f(-, -) (1 - x) x (1 - y) y + 2 f(0, -) (1 - x) (1 - y) y
2 2 2
2 2 1 2
+ f(1, 0) x (1 - y) + 2 f(-, 0) (1 - x) x (1 - y)
2
2 2
+ f(0, 0) (1 - x) (1 - y)
To use bernstein_approx, first load("bernstein").
Express the polynomial e exactly as a linear combination of
multi-variable Bernstein polynomials.
(%i1) bernstein_expand(x*y+1,[x,y]); (%o1) 2 x y + (1 - x) y + x (1 - y) + (1 - x) (1 - y) (%i2) expand(%); (%o2) x y + 1
Maxima signals an error when the first argument isn't a polynomial.
To use bernstein_expand, first load("bernstein").
| [ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated by Robert Dodier on Dezember, 29 2019 using texi2html 1.76.