// Copyright (C) 2006 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MATRIx_SUBEXP_
#define DLIB_MATRIx_SUBEXP_
#include "matrix_subexp_abstract.h"
#include "matrix_op.h"
#include "matrix.h"
#include "../geometry/rectangle.h"
#include "matrix_expressions.h"
#include "matrix_mat.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <long start, long inc, long end>
const matrix_range_static_exp<start,inc,end> range (
)
{
COMPILE_TIME_ASSERT(inc > 0);
return matrix_range_static_exp<start,inc,end>();
}
template <long start, long end>
const matrix_range_static_exp<start,1,end> range (
)
{
return matrix_range_static_exp<start,1,end>();
}
inline const matrix_range_exp<long> range (
long start,
long end
)
{
return matrix_range_exp<long>(start,end);
}
inline const matrix_range_exp<long> range (
long start,
long inc,
long end
)
{
DLIB_ASSERT(inc > 0,
"\tconst matrix_exp range(start, inc, end)"
<< "\n\tInvalid inputs to this function"
<< "\n\tstart: " << start
<< "\n\tinc: " << inc
<< "\n\tend: " << end
);
return matrix_range_exp<long>(start,inc,end);
}
// ----------------------------------------------------------------------------------------
template <typename M>
struct op_subm
{
op_subm (
const M& m_x,
const long& r_x,
const long& c_x,
const long& nr_x,
const long& nc_x
) : m(m_x), r_(r_x), c_(c_x), nr_(nr_x), nc_(nc_x) { }
const M& m;
const long r_;
const long c_;
const long nr_;
const long nc_;
const static long cost = M::cost+1;
typedef typename M::type type;
typedef typename M::const_ret_type const_ret_type;
typedef typename M::mem_manager_type mem_manager_type;
typedef typename M::layout_type layout_type;
const static long NR = 0;
const static long NC = 0;
const_ret_type apply ( long r, long c) const { return m(r+r_,c+c_); }
long nr () const { return nr_; }
long nc () const { return nc_; }
template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
};
template <
typename EXP
>
const matrix_op<op_subm<EXP> > subm (
const matrix_exp<EXP>& m,
long r,
long c,
long nr,
long nc
)
{
DLIB_ASSERT(r >= 0 && c >= 0 && nr >= 0 && nc >= 0 && r+nr <= m.nr() && c+nc <= m.nc(),
"\tconst matrix_exp subm(const matrix_exp& m, r, c, nr, nc)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tr: " << r
<< "\n\tc: " << c
<< "\n\tnr: " << nr
<< "\n\tnc: " << nc
);
typedef op_subm<EXP> op;
return matrix_op<op>(op(m.ref(),r,c,nr,nc));
}
// ----------------------------------------------------------------------------------------
template <
typename EXP
>
const matrix_op<op_subm<EXP> > subm_clipped (
const matrix_exp<EXP>& m,
long r,
long c,
long nr,
long nc
)
{
rectangle box(c,r,c+nc-1,r+nr-1);
box = box.intersect(get_rect(m));
typedef op_subm<EXP> op;
return matrix_op<op>(op(m.ref(),box.top(),box.left(),box.height(),box.width()));
}
// ----------------------------------------------------------------------------------------
template <
typename EXP
>
const matrix_op<op_subm<EXP> > subm (
const matrix_exp<EXP>& m,
const rectangle& rect
)
{
DLIB_ASSERT(get_rect(m).contains(rect) == true,
"\tconst matrix_exp subm(const matrix_exp& m, const rectangle& rect)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\trect.left(): " << rect.left()
<< "\n\trect.top(): " << rect.top()
<< "\n\trect.right(): " << rect.right()
<< "\n\trect.bottom(): " << rect.bottom()
);
typedef op_subm<EXP> op;
return matrix_op<op>(op(m.ref(),rect.top(),rect.left(),rect.height(),rect.width()));
}
// ----------------------------------------------------------------------------------------
template <
typename EXP
>
const matrix_op<op_subm<EXP> > subm_clipped (
const matrix_exp<EXP>& m,
rectangle rect
)
{
rect = rect.intersect(get_rect(m));
typedef op_subm<EXP> op;
return matrix_op<op>(op(m.ref(),rect.top(),rect.left(),rect.height(),rect.width()));
}
// ----------------------------------------------------------------------------------------
template <typename M1, typename M2, typename M3>
struct op_subm_range
{
op_subm_range( const M1& m1_, const M2& rows_, const M3& cols_) :
m1(m1_), rows(rows_), cols(cols_) {}
const M1& m1;
const M2& rows;
const M3& cols;
const static long cost = M1::cost+M2::cost+M3::cost;
typedef typename M1::type type;
typedef typename M1::const_ret_type const_ret_type;
typedef typename M1::mem_manager_type mem_manager_type;
typedef typename M1::layout_type layout_type;
const static long NR = M2::NC*M2::NR;
const static long NC = M3::NC*M3::NR;
const_ret_type apply ( long r, long c) const { return m1(rows(r),cols(c)); }
long nr () const { return rows.size(); }
long nc () const { return cols.size(); }
template <typename U> bool aliases ( const matrix_exp<U>& item) const
{ return m1.aliases(item) || rows.aliases(item) || cols.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
{ return m1.aliases(item) || rows.aliases(item) || cols.aliases(item); }
};
template <
typename EXP,
typename EXPr,
typename EXPc
>
const matrix_op<op_subm_range<EXP,EXPr,EXPc> > subm (
const matrix_exp<EXP>& m,
const matrix_exp<EXPr>& rows,
const matrix_exp<EXPc>& cols
)
{
// the rows and cols matrices must contain integer elements
COMPILE_TIME_ASSERT(std::numeric_limits<typename EXPr::type>::is_integer);
COMPILE_TIME_ASSERT(std::numeric_limits<typename EXPc::type>::is_integer);
DLIB_ASSERT(0 <= min(rows) && max(rows) < m.nr() && 0 <= min(cols) && max(cols) < m.nc() &&
(rows.nr() == 1 || rows.nc() == 1) && (cols.nr() == 1 || cols.nc() == 1),
"\tconst matrix_exp subm(const matrix_exp& m, const matrix_exp& rows, const matrix_exp& cols)"
<< "\n\tYou have given invalid arguments to this function"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tmin(rows): " << min(rows)
<< "\n\tmax(rows): " << max(rows)
<< "\n\tmin(cols): " << min(cols)
<< "\n\tmax(cols): " << max(cols)
<< "\n\trows.nr(): " << rows.nr()
<< "\n\trows.nc(): " << rows.nc()
<< "\n\tcols.nr(): " << cols.nr()
<< "\n\tcols.nc(): " << cols.nc()
);
typedef op_subm_range<EXP,EXPr,EXPc> op;
return matrix_op<op>(op(m.ref(),rows.ref(),cols.ref()));
}
// ----------------------------------------------------------------------------------------
template <typename M>
struct op_rowm
{
op_rowm(const M& m_, const long& row_) : m(m_), row(row_) {}
const M& m;
const long row;
const static long cost = M::cost;
const static long NR = 1;
const static long NC = M::NC;
typedef typename M::type type;
typedef typename M::const_ret_type const_ret_type;
typedef typename M::mem_manager_type mem_manager_type;
typedef typename M::layout_type layout_type;
const_ret_type apply ( long, long c) const { return m(row,c); }
long nr () const { return 1; }
long nc () const { return m.nc(); }
template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
};
template <
typename EXP
>
const matrix_op<op_rowm<EXP> > rowm (
const matrix_exp<EXP>& m,
long row
)
{
DLIB_ASSERT(row >= 0 && row < m.nr(),
"\tconst matrix_exp rowm(const matrix_exp& m, row)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\trow: " << row
);
typedef op_rowm<EXP> op;
return matrix_op<op>(op(m.ref(),row));
}
template <typename EXP>
struct rowm_exp
{
typedef matrix_op<op_rowm<EXP> > type;
};
// ----------------------------------------------------------------------------------------
template <typename M>
struct op_rowm2
{
op_rowm2(const M& m_, const long& row_, const long& len) : m(m_), row(row_), length(len) {}
const M& m;
const long row;
const long length;
const static long cost = M::cost;
const static long NR = 1;
const static long NC = 0;
typedef typename M::type type;
typedef typename M::const_ret_type const_ret_type;
typedef typename M::mem_manager_type mem_manager_type;
typedef typename M::layout_type layout_type;
const_ret_type apply ( long , long c) const { return m(row,c); }
long nr () const { return 1; }
long nc () const { return length; }
template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
};
template <
typename EXP
>
const matrix_op<op_rowm2<EXP> > rowm (
const matrix_exp<EXP>& m,
long row,
long length
)
{
DLIB_ASSERT(row >= 0 && row < m.nr() &&
length >= 0 && length <= m.nc(),
"\tconst matrix_exp rowm(const matrix_exp& m, row, length)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\trow: " << row
<< "\n\tlength: " << length
);
typedef op_rowm2<EXP> op;
return matrix_op<op>(op(m.ref(), row, length));
}
// ----------------------------------------------------------------------------------------
template <typename M1, typename M2>
struct op_rowm_range
{
op_rowm_range( const M1& m1_, const M2& rows_) : m1(m1_), rows(rows_) {}
const M1& m1;
const M2& rows;
const static long cost = M1::cost+M2::cost;
typedef typename M1::type type;
typedef typename M1::const_ret_type const_ret_type;
typedef typename M1::mem_manager_type mem_manager_type;
typedef typename M1::layout_type layout_type;
const static long NR = M2::NC*M2::NR;
const static long NC = M1::NC;
const_ret_type apply ( long r, long c) const { return m1(rows(r),c); }
long nr () const { return rows.size(); }
long nc () const { return m1.nc(); }
template <typename U> bool aliases ( const matrix_exp<U>& item) const
{ return m1.aliases(item) || rows.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
{ return m1.aliases(item) || rows.aliases(item); }
};
template <
typename EXP1,
typename EXP2
>
const matrix_op<op_rowm_range<EXP1,EXP2> > rowm (
const matrix_exp<EXP1>& m,
const matrix_exp<EXP2>& rows
)
{
// the rows matrix must contain integer elements
COMPILE_TIME_ASSERT(std::numeric_limits<typename EXP2::type>::is_integer);
#ifdef ENABLE_ASSERTS
if (rows.size() != 0) {
DLIB_ASSERT(0 <= min(rows) && max(rows) < m.nr() && (rows.nr() == 1 || rows.nc() == 1),
"\tconst matrix_exp rowm(const matrix_exp& m, const matrix_exp& rows)"
<< "\n\tYou have given invalid arguments to this function"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tmin(rows): " << min(rows)
<< "\n\tmax(rows): " << max(rows)
<< "\n\trows.nr(): " << rows.nr()
<< "\n\trows.nc(): " << rows.nc()
);
}
#endif // ENABLE_ASSERTS
typedef op_rowm_range<EXP1,EXP2> op;
return matrix_op<op>(op(m.ref(),rows.ref()));
}
// ----------------------------------------------------------------------------------------
template <typename M>
struct op_colm
{
op_colm(const M& m_, const long& col_) : m(m_), col(col_) {}
const M& m;
const long col;
const static long cost = M::cost;
const static long NR = M::NR;
const static long NC = 1;
typedef typename M::type type;
typedef typename M::const_ret_type const_ret_type;
typedef typename M::mem_manager_type mem_manager_type;
typedef typename M::layout_type layout_type;
const_ret_type apply ( long r, long) const { return m(r,col); }
long nr () const { return m.nr(); }
long nc () const { return 1; }
template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
};
template <
typename EXP
>
const matrix_op<op_colm<EXP> > colm (
const matrix_exp<EXP>& m,
long col
)
{
DLIB_ASSERT(col >= 0 && col < m.nc(),
"\tconst matrix_exp colm(const matrix_exp& m, row)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tcol: " << col
);
typedef op_colm<EXP> op;
return matrix_op<op>(op(m.ref(),col));
}
template <typename EXP>
struct colm_exp
{
typedef matrix_op<op_colm<EXP> > type;
};
// ----------------------------------------------------------------------------------------
template <typename M>
struct op_colm2
{
op_colm2(const M& m_, const long& col_, const long& len) : m(m_), col(col_), length(len) {}
const M& m;
const long col;
const long length;
const static long cost = M::cost;
const static long NR = 0;
const static long NC = 1;
typedef typename M::type type;
typedef typename M::const_ret_type const_ret_type;
typedef typename M::mem_manager_type mem_manager_type;
typedef typename M::layout_type layout_type;
const_ret_type apply ( long r, long ) const { return m(r,col); }
long nr () const { return length; }
long nc () const { return 1; }
template <typename U> bool aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const { return m.aliases(item); }
};
template <
typename EXP
>
const matrix_op<op_colm2<EXP> > colm (
const matrix_exp<EXP>& m,
long col,
long length
)
{
DLIB_ASSERT(col >= 0 && col < m.nc() &&
length >= 0 && length <= m.nr(),
"\tconst matrix_exp colm(const matrix_exp& m, col, length)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tcol: " << col
<< "\n\tlength: " << length
);
typedef op_colm2<EXP> op;
return matrix_op<op>(op(m.ref(),col, length));
}
// ----------------------------------------------------------------------------------------
template <typename M1, typename M2>
struct op_colm_range
{
op_colm_range( const M1& m1_, const M2& cols_) : m1(m1_), cols(cols_) {}
const M1& m1;
const M2& cols;
typedef typename M1::type type;
typedef typename M1::const_ret_type const_ret_type;
typedef typename M1::mem_manager_type mem_manager_type;
typedef typename M1::layout_type layout_type;
const static long NR = M1::NR;
const static long NC = M2::NC*M2::NR;
const static long cost = M1::cost+M2::cost;
const_ret_type apply (long r, long c) const { return m1(r,cols(c)); }
long nr () const { return m1.nr(); }
long nc () const { return cols.size(); }
template <typename U> bool aliases ( const matrix_exp<U>& item) const
{ return m1.aliases(item) || cols.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
{ return m1.aliases(item) || cols.aliases(item); }
};
template <
typename EXP1,
typename EXP2
>
const matrix_op<op_colm_range<EXP1,EXP2> > colm (
const matrix_exp<EXP1>& m,
const matrix_exp<EXP2>& cols
)
{
// the rows matrix must contain integer elements
COMPILE_TIME_ASSERT(std::numeric_limits<typename EXP2::type>::is_integer);
#ifdef ENABLE_ASSERTS
if (cols.size() != 0) {
DLIB_ASSERT(0 <= min(cols) && max(cols) < m.nc() && (cols.nr() == 1 || cols.nc() == 1),
"\tconst matrix_exp colm(const matrix_exp& m, const matrix_exp& cols)"
<< "\n\tYou have given invalid arguments to this function"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tmin(cols): " << min(cols)
<< "\n\tmax(cols): " << max(cols)
<< "\n\tcols.nr(): " << cols.nr()
<< "\n\tcols.nc(): " << cols.nc()
);
}
#endif // ENABLE_ASSERTS
typedef op_colm_range<EXP1,EXP2> op;
return matrix_op<op>(op(m.ref(),cols.ref()));
}
// ----------------------------------------------------------------------------------------
template <typename T>
class assignable_ptr_matrix
{
public:
typedef T type;
typedef row_major_layout layout_type;
typedef matrix<T,0,0,default_memory_manager,layout_type> matrix_type;
assignable_ptr_matrix(
T* ptr_,
long nr_,
long nc_
) : ptr(ptr_), height(nr_), width(nc_){}
T& operator() (
long r,
long c
)
{
return ptr[r*width + c];
}
const T& operator() (
long r,
long c
) const
{
return ptr[r*width + c];
}
long nr() const { return height; }
long nc() const { return width; }
template <typename EXP>
assignable_ptr_matrix& operator= (
const matrix_exp<EXP>& exp
)
{
// You can only assign to a set_ptrm() expression with a source matrix that
// contains the same type of elements as the target (i.e. you can't mix double
// and float types).
COMPILE_TIME_ASSERT((is_same_type<T, typename EXP::type>::value == true));
DLIB_ASSERT( exp.nr() == height && exp.nc() == width,
"\tassignable_matrix_expression set_ptrm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\twidth (target matrix): " << width
<< "\n\theight (target matrix): " << height
);
if (exp.destructively_aliases(mat(ptr,height,width)) == false)
{
matrix_assign(*this, exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to ptr to
// avoid aliasing issues during the copy
this->operator=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_ptr_matrix& operator+= (
const matrix_exp<EXP>& exp
)
{
// You can only assign to a set_ptrm() expression with a source matrix that
// contains the same type of elements as the target (i.e. you can't mix double
// and float types).
COMPILE_TIME_ASSERT((is_same_type<T, typename EXP::type>::value == true));
DLIB_ASSERT( exp.nr() == height && exp.nc() == width,
"\tassignable_matrix_expression set_ptrm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\twidth (target matrix): " << width
<< "\n\theight (target matrix): " << height
);
if (exp.destructively_aliases(mat(ptr,height,width)) == false)
{
matrix_assign(*this, mat(ptr,height,width)+exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to ptr to
// avoid aliasing issues during the copy
this->operator+=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_ptr_matrix& operator-= (
const matrix_exp<EXP>& exp
)
{
// You can only assign to a set_ptrm() expression with a source matrix that
// contains the same type of elements as the target (i.e. you can't mix double
// and float types).
COMPILE_TIME_ASSERT((is_same_type<T, typename EXP::type>::value == true));
DLIB_ASSERT( exp.nr() == height && exp.nc() == width,
"\tassignable_matrix_expression set_ptrm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\twidth (target matrix): " << width
<< "\n\theight (target matrix): " << height
);
if (exp.destructively_aliases(mat(ptr,height,width)) == false)
{
matrix_assign(*this, mat(ptr,height,width)-exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to ptr to
// avoid aliasing issues during the copy
this->operator-=(tmp(exp));
}
return *this;
}
assignable_ptr_matrix& operator= (
const T& value
)
{
const long size = width*height;
for (long i = 0; i < size; ++i)
ptr[i] = value;
return *this;
}
assignable_ptr_matrix& operator+= (
const T& value
)
{
const long size = width*height;
for (long i = 0; i < size; ++i)
ptr[i] += value;
return *this;
}
assignable_ptr_matrix& operator-= (
const T& value
)
{
const long size = width*height;
for (long i = 0; i < size; ++i)
ptr[i] -= value;
return *this;
}
T* ptr;
const long height;
const long width;
};
template <typename T>
assignable_ptr_matrix<T> set_ptrm (
T* ptr,
long nr,
long nc = 1
)
{
DLIB_ASSERT(nr >= 0 && nc >= 0,
"\t assignable_matrix_expression set_ptrm(T* ptr, long nr, long nc)"
<< "\n\t The dimensions can't be negative."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
);
return assignable_ptr_matrix<T>(ptr,nr,nc);
}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename mm, typename l>
class assignable_sub_matrix
{
public:
typedef T type;
typedef l layout_type;
typedef matrix<T,NR,NC,mm,l> matrix_type;
assignable_sub_matrix(
matrix<T,NR,NC,mm,l>& m_,
long top_,
long left_,
long height_,
long width_
) : m(m_), left(left_), top(top_), width(width_), height(height_) {}
T& operator() (
long r,
long c
)
{
return m(r+top,c+left);
}
const T& operator() (
long r,
long c
) const
{
return m(r+top,c+left);
}
long nr() const { return height; }
long nc() const { return width; }
template <typename EXP>
assignable_sub_matrix& operator= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == height && exp.nc() == width,
"\tassignable_matrix_expression set_subm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\twidth (target matrix): " << width
<< "\n\theight (target matrix): " << height
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_sub_matrix& operator+= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == height && exp.nc() == width,
"\tassignable_matrix_expression set_subm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\twidth (target matrix): " << width
<< "\n\theight (target matrix): " << height
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, subm(m,top,left,height,width)+exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator+=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_sub_matrix& operator-= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == height && exp.nc() == width,
"\tassignable_matrix_expression set_subm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\twidth (target matrix): " << width
<< "\n\theight (target matrix): " << height
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, subm(m,top,left,height,width)-exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator-=(tmp(exp));
}
return *this;
}
assignable_sub_matrix& operator= (
const T& value
)
{
const long bottom = top+height-1;
const long right = left+width-1;
for (long r = top; r <= bottom; ++r)
{
for (long c = left; c <= right; ++c)
{
m(r,c) = value;
}
}
return *this;
}
assignable_sub_matrix& operator+= (
const T& value
)
{
const long bottom = top+height-1;
const long right = left+width-1;
for (long r = top; r <= bottom; ++r)
{
for (long c = left; c <= right; ++c)
{
m(r,c) += value;
}
}
return *this;
}
assignable_sub_matrix& operator-= (
const T& value
)
{
const long bottom = top+height-1;
const long right = left+width-1;
for (long r = top; r <= bottom; ++r)
{
for (long c = left; c <= right; ++c)
{
m(r,c) -= value;
}
}
return *this;
}
matrix<T,NR,NC,mm,l>& m;
const long left, top, width, height;
};
template <typename T, long NR, long NC, typename mm, typename l>
assignable_sub_matrix<T,NR,NC,mm,l> set_subm (
matrix<T,NR,NC,mm,l>& m,
const rectangle& rect
)
{
DLIB_ASSERT(get_rect(m).contains(rect) == true,
"\tassignable_matrix_expression set_subm(matrix& m, const rectangle& rect)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\trect.left(): " << rect.left()
<< "\n\trect.top(): " << rect.top()
<< "\n\trect.right(): " << rect.right()
<< "\n\trect.bottom(): " << rect.bottom()
);
return assignable_sub_matrix<T,NR,NC,mm,l>(m,rect.top(), rect.left(), rect.height(), rect.width());
}
template <typename T, long NR, long NC, typename mm, typename l>
assignable_sub_matrix<T,NR,NC,mm,l> set_subm (
matrix<T,NR,NC,mm,l>& m,
long r,
long c,
long nr,
long nc
)
{
DLIB_ASSERT(r >= 0 && c >= 0 && nr >= 0 && nc >= 0 && r+nr <= m.nr() && c+nc <= m.nc(),
"\tassignable_matrix_expression set_subm(matrix& m, r, c, nr, nc)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tr: " << r
<< "\n\tc: " << c
<< "\n\tnr: " << nr
<< "\n\tnc: " << nc
);
return assignable_sub_matrix<T,NR,NC,mm,l>(m,r,c, nr, nc);
}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename mm, typename l, typename EXPr, typename EXPc>
class assignable_sub_range_matrix
{
public:
typedef T type;
typedef l layout_type;
typedef matrix<T,NR,NC,mm,l> matrix_type;
assignable_sub_range_matrix(
matrix<T,NR,NC,mm,l>& m_,
const EXPr& rows_,
const EXPc& cols_
) : m(m_), rows(rows_), cols(cols_) {}
T& operator() (
long r,
long c
)
{
return m(rows(r),cols(c));
}
long nr() const { return rows.size(); }
long nc() const { return cols.size(); }
template <typename EXP>
assignable_sub_range_matrix& operator= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == rows.size() && exp.nc() == cols.size(),
"\tassignable_matrix_expression set_subm(matrix& m, const matrix_exp rows, const matrix_exp cols)"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\trows.size() (target matrix): " << rows.size()
<< "\n\tcols.size() (target matrix): " << cols.size()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_sub_range_matrix& operator+= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == rows.size() && exp.nc() == cols.size(),
"\tassignable_matrix_expression set_subm(matrix& m, const matrix_exp rows, const matrix_exp cols)"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\trows.size() (target matrix): " << rows.size()
<< "\n\tcols.size() (target matrix): " << cols.size()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, subm(m,rows,cols)+exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator+=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_sub_range_matrix& operator-= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == rows.size() && exp.nc() == cols.size(),
"\tassignable_matrix_expression set_subm(matrix& m, const matrix_exp rows, const matrix_exp cols)"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\trows.size() (target matrix): " << rows.size()
<< "\n\tcols.size() (target matrix): " << cols.size()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, subm(m,rows,cols)-exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator-=(tmp(exp));
}
return *this;
}
assignable_sub_range_matrix& operator= (
const T& value
)
{
for (long r = 0; r < rows.size(); ++r)
{
for (long c = 0; c < cols.size(); ++c)
{
m(rows(r),cols(c)) = value;
}
}
return *this;
}
assignable_sub_range_matrix& operator+= (
const T& value
)
{
for (long r = 0; r < rows.size(); ++r)
{
for (long c = 0; c < cols.size(); ++c)
{
m(rows(r),cols(c)) += value;
}
}
return *this;
}
assignable_sub_range_matrix& operator-= (
const T& value
)
{
for (long r = 0; r < rows.size(); ++r)
{
for (long c = 0; c < cols.size(); ++c)
{
m(rows(r),cols(c)) -= value;
}
}
return *this;
}
private:
matrix<T,NR,NC,mm,l>& m;
const EXPr rows;
const EXPc cols;
};
template <typename T, long NR, long NC, typename mm, typename l, typename EXPr, typename EXPc>
assignable_sub_range_matrix<T,NR,NC,mm,l,EXPr,EXPc > set_subm (
matrix<T,NR,NC,mm,l>& m,
const matrix_exp<EXPr>& rows,
const matrix_exp<EXPc>& cols
)
{
DLIB_ASSERT(0 <= min(rows) && max(rows) < m.nr() && 0 <= min(cols) && max(cols) < m.nc() &&
(rows.nr() == 1 || rows.nc() == 1) && (cols.nr() == 1 || cols.nc() == 1),
"\tassignable_matrix_expression set_subm(matrix& m, const matrix_exp& rows, const matrix_exp& cols)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tmin(rows): " << min(rows)
<< "\n\tmax(rows): " << max(rows)
<< "\n\tmin(cols): " << min(cols)
<< "\n\tmax(cols): " << max(cols)
<< "\n\trows.nr(): " << rows.nr()
<< "\n\trows.nc(): " << rows.nc()
<< "\n\tcols.nr(): " << cols.nr()
<< "\n\tcols.nc(): " << cols.nc()
);
return assignable_sub_range_matrix<T,NR,NC,mm,l,EXPr,EXPc >(m,rows.ref(),cols.ref());
}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename mm, typename l, typename EXPr>
assignable_sub_range_matrix<T,NR,NC,mm,l,EXPr,matrix_range_exp<long> > set_rowm (
matrix<T,NR,NC,mm,l>& m,
const matrix_exp<EXPr>& rows
)
{
DLIB_ASSERT(0 <= min(rows) && max(rows) < m.nr() && (rows.nr() == 1 || rows.nc() == 1),
"\tassignable_matrix_expression set_rowm(matrix& m, const matrix_exp& rows)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tmin(rows): " << min(rows)
<< "\n\tmax(rows): " << max(rows)
<< "\n\trows.nr(): " << rows.nr()
<< "\n\trows.nc(): " << rows.nc()
);
return assignable_sub_range_matrix<T,NR,NC,mm,l,EXPr,matrix_range_exp<long> >(m,rows.ref(),range(0,m.nc()-1));
}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename mm, typename l, typename EXPc>
assignable_sub_range_matrix<T,NR,NC,mm,l,matrix_range_exp<long>,EXPc > set_colm (
matrix<T,NR,NC,mm,l>& m,
const matrix_exp<EXPc>& cols
)
{
DLIB_ASSERT(0 <= min(cols) && max(cols) < m.nc() && (cols.nr() == 1 || cols.nc() == 1),
"\tassignable_matrix_expression set_colm(matrix& m, const matrix_exp& cols)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tmin(cols): " << min(cols)
<< "\n\tmax(cols): " << max(cols)
<< "\n\tcols.nr(): " << cols.nr()
<< "\n\tcols.nc(): " << cols.nc()
);
return assignable_sub_range_matrix<T,NR,NC,mm,l,matrix_range_exp<long>,EXPc >(m,range(0,m.nr()-1),cols.ref());
}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename mm, typename l>
class assignable_col_matrix
{
public:
typedef T type;
typedef l layout_type;
typedef matrix<T,NR,NC,mm,l> matrix_type;
assignable_col_matrix(
matrix<T,NR,NC,mm,l>& m_,
const long col_
) : m(m_), col(col_) {}
T& operator() (
long r,
long
)
{
return m(r,col);
}
const T& operator() (
long r,
long
) const
{
return m(r,col);
}
long nr() const { return m.nr(); }
long nc() const { return 1; }
template <typename EXP>
assignable_col_matrix& operator= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nc() == 1 && exp.nr() == m.nr(),
"\tassignable_matrix_expression set_colm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\tm.nr() (target matrix): " << m.nr()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_col_matrix& operator+= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nc() == 1 && exp.nr() == m.nr(),
"\tassignable_matrix_expression set_colm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\tm.nr() (target matrix): " << m.nr()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, colm(m,col)+exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator+=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_col_matrix& operator-= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nc() == 1 && exp.nr() == m.nr(),
"\tassignable_matrix_expression set_colm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\tm.nr() (target matrix): " << m.nr()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, colm(m,col)-exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator-=(tmp(exp));
}
return *this;
}
assignable_col_matrix& operator= (
const T& value
)
{
for (long i = 0; i < m.nr(); ++i)
{
m(i,col) = value;
}
return *this;
}
assignable_col_matrix& operator+= (
const T& value
)
{
for (long i = 0; i < m.nr(); ++i)
{
m(i,col) += value;
}
return *this;
}
assignable_col_matrix& operator-= (
const T& value
)
{
for (long i = 0; i < m.nr(); ++i)
{
m(i,col) -= value;
}
return *this;
}
matrix<T,NR,NC,mm,l>& m;
const long col;
};
template <typename T, long NR, long NC, typename mm, typename l>
assignable_col_matrix<T,NR,NC,mm,l> set_colm (
matrix<T,NR,NC,mm,l>& m,
const long col
)
{
DLIB_ASSERT(col >= 0 && col < m.nc(),
"\tassignable_matrix_expression set_colm(matrix& m, col)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\tcol: " << col
);
return assignable_col_matrix<T,NR,NC,mm,l>(m,col);
}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename mm, typename l>
class assignable_row_matrix
{
public:
typedef T type;
typedef l layout_type;
typedef matrix<T,NR,NC,mm,l> matrix_type;
assignable_row_matrix(
matrix<T,NR,NC,mm,l>& m_,
const long row_
) : m(m_), row(row_) {}
T& operator() (
long ,
long c
)
{
return m(row,c);
}
const T& operator() (
long ,
long c
) const
{
return m(row,c);
}
long nr() const { return 1; }
long nc() const { return m.nc(); }
template <typename EXP>
assignable_row_matrix& operator= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == 1 && exp.nc() == m.nc(),
"\tassignable_matrix_expression set_rowm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\tm.nc() (target matrix): " << m.nc()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_row_matrix& operator+= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == 1 && exp.nc() == m.nc(),
"\tassignable_matrix_expression set_rowm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\tm.nc() (target matrix): " << m.nc()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, rowm(m,row)+exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator+=(tmp(exp));
}
return *this;
}
template <typename EXP>
assignable_row_matrix& operator-= (
const matrix_exp<EXP>& exp
)
{
DLIB_ASSERT( exp.nr() == 1 && exp.nc() == m.nc(),
"\tassignable_matrix_expression set_rowm()"
<< "\n\tYou have tried to assign to this object using a matrix that isn't the right size"
<< "\n\texp.nr() (source matrix): " << exp.nr()
<< "\n\texp.nc() (source matrix): " << exp.nc()
<< "\n\tm.nc() (target matrix): " << m.nc()
);
if (exp.destructively_aliases(m) == false)
{
matrix_assign(*this, rowm(m,row)-exp);
}
else
{
// make a temporary copy of the matrix we are going to assign to m to
// avoid aliasing issues during the copy
this->operator-=(tmp(exp));
}
return *this;
}
assignable_row_matrix& operator= (
const T& value
)
{
for (long i = 0; i < m.nc(); ++i)
{
m(row,i) = value;
}
return *this;
}
assignable_row_matrix& operator+= (
const T& value
)
{
for (long i = 0; i < m.nc(); ++i)
{
m(row,i) += value;
}
return *this;
}
assignable_row_matrix& operator-= (
const T& value
)
{
for (long i = 0; i < m.nc(); ++i)
{
m(row,i) -= value;
}
return *this;
}
matrix<T,NR,NC,mm,l>& m;
const long row;
};
template <typename T, long NR, long NC, typename mm, typename l>
assignable_row_matrix<T,NR,NC,mm,l> set_rowm (
matrix<T,NR,NC,mm,l>& m,
const long row
)
{
DLIB_ASSERT(row >= 0 && row < m.nr(),
"\tassignable_matrix_expression set_rowm(matrix& m, row)"
<< "\n\tYou have specified invalid sub matrix dimensions"
<< "\n\tm.nr(): " << m.nr()
<< "\n\tm.nc(): " << m.nc()
<< "\n\trow: " << row
);
return assignable_row_matrix<T,NR,NC,mm,l>(m,row);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MATRIx_SUBEXP_